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ABSTRACT 

 
 
 

 During the last few years we have witnessed an explosive growth in the 

development and deployment of applications that transmit and receive audio content over 

the networks. The problem of providing a jitter free audio content over the network is an 

issue under extensive research. The time since the generation of packet at the source and 

its reception at the destination can fluctuate from one packet to another. This 

phenomenon is referred to as jitter. The effective utilization of network bandwidth and 

the rate at which data is transmitted are the important factors that decide the audio quality 

and minimization of jitters. These are achieved by the loss recovery schemes that attempt 

to preserve acceptable audio quality even in the presence of packet loss.  Listening to 

music over Internet is aided by a system called Streaming server.  Streaming servers are 

highly influenced by the existing network parameters like server load, congestion and the 

protocol in use.  Our project unfolds an approach using Interleaved Forward Error 

Correction technique for contiguous listening pleasure.   
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1.INTRODUCTION 
   

It would be a real pleasure to hear music over Internet without any breaks in between.  

But we are in a congested world where everything that travels spatially has to face traffic 

jam and collision.  Listening to music over Internet is aided by a system called Streaming 

Audio.  Network data packets are no exceptions to this rule. Nowadays, even a dial up 

connection supports better reception of streaming data.  But we have always developed a 

compromise on the quality of music that we hear because higher the quality, higher the 

data rate requirement.  With the data rate that is possible in a dial up or an ISDN 

connection, we cannot afford to use a higher data rate quality audio service.     

 

1.1  MOTIVATION AND OBJECTIVE 
Streaming audio is highly influenced by the existing network parameters like server 

load, congestion and protocols.  Server load depicts the efficiency of a server, which is to 

handle many clients simultaneously.  This can be easily fixed by providing a good server 

configuration.  After all, the sole purpose is to provide high quality service for the clients.  

But congestion is the key factor that is to be analyzed.  This project unfolds an approach 

using the UDP transport layer for contiguous listening pleasure irrespective of congestion 

situations.  The choice of UDP instead of TCP is dealt in the following section.   

 

1.2   CHOICE OF UDP 
Most of the network applications use the Transfer Control Protocol (TCP/IP) or 

connection oriented protocol. TCP affirms error-free, in-sequence data transfer for the 

user.  TCP also handles congestion in its own way. Packet loss, duplicate packets, packet 

retransmission are handled implicitly by TCP.  TCP is also called a state-full protocol.  

Since it handles all by itself, the application that is running on TCP can never take control 

over the transmission policy.  Streaming systems come under the category of Fault 

tolerant Real time systems where error is tolerable. This is the major problem with the 

TCP.  It does too much work to ensure error-free transmission and hence it compromises 

the timely data delivery.  In streaming audio, timely packet delivery is more important 

than error-free delivery.  The nature of audio being redundant allows errors to be tolerant 
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in the audio data.  Since our hearing mechanism is of Averaging type, minor error bursts 

are ignored or rather equalized by the human hearing system.  Exploiting this fact 

unleashes the sensitivity towards errors. 

 

TCP’s latency in data delivery exponentially increases when congestion rate is high.  

TCP does the congestion control with mechanisms like slow start and exponential back-

off which eventually gears up the latency factor.  This latency factor is very crucial when 

timely delivery is the driving criterion. 

 

UDP, on the other hand is a stateless protocol.  Although it’s an unreliable protocol, 

it’s the best choice for streaming applications.  The reason is all the work that is done by 

TCP can be done based on the requirements of the application.  Since the main requisite 

is packet delivery rather than error-free delivery, the application is free to choose its 

optimizations with respect to the existing network conditions. The bottleneck with the 

UDP is that loss of packets is not known, as there is no acknowledgement from the client. 

Moreover in the receiving end one has to sequence the packets according to their time 

stamp or sequence number. Since a packet loss up to 5% in audio content is generally 

tolerable, UDP is most favored.  
 
1.3  NATURE OF AUDIO 
 

Audio data is basically binary data with a lot of flexibility. The only constraint on 

audio data is timing. Here, timing means sampling and playing rate. Audio can be 

erroneous to some extent. Based on the fact that hearing system falls under the category 

of Averaging sensors, minor pitfalls in the quality could be easily compromised. It is 

based on this fact that our project is modeled. Another wonderful advantage is the 

redundancy of audio data.  If a part of audio is missing, the gap in playing could be 

regenerated from already played data and the available future data. 
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1.4 GENERAL DATA FLOW 

 
This part explains about the general data exchange between the server and the client.  

The block diagram depicts the general operations involved in streaming audio. 

                                                 

                                                                                                        
 

FIGURE 1.1 General Data Flow 
 

From the client, a request for audio is posted to the server.  The server searches for the 

required audio in its database.  If the audio file is found, it splits the audio file into 

numerous data frames that are sequence numbered and put in the output buffer for 

delivery.  On the other hand, data is received in the client’s buffer, sequenced in the right 

order and placed in the audio playback system.  But in this system, the possibility of jitter 

and breaks in playing are very high.  Some of the methods of reducing jitter and break in 

playback are: Forward Error Correction method and Interleaving, dealt in the following 

chapters.  Then our optimized solution is proposed which is essentially a combination of 

both the methodologies. 
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2.LITERATURE SURVEY 

 
2.1 PCM SOUND WAVE FILE FORMAT 
 
The WAVE file format is a subset of Microsoft's RIFF specification for the storage of 

multimedia files. A RIFF file starts out with a file header followed by a sequence of data 

chunks. A WAVE file is often just a RIFF file with a single "WAVE" chunk which 

consists of two sub-chunks -- a "fmt " chunk specifying the data format and a "data" 

chunk containing the actual sample data [5].  

 

 
FIGURE 2.1 Canonical Wave Format 
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2.1.1 WAV FILE FORMAT DESCRIPTION 
WAV files are probably the simplest of the common formats for storing audio samples. 

Unlike MPEG and other compressed formats, WAVs store samples "in the raw" format 

where no pre-processing is required other than formatting the data. 

 

Each Chunk breaks down as follows:  

 

RIFF Chunk (12 bytes in length total)  

Byte Number 

0 – 3 "RIFF" (ASCII Characters) 

4 – 7 
Total Length Of Package To Follow 

(Binary, little endian) 

8 – 11 "WAVE" (ASCII Characters) 

 

FIGURE 2.2 RIFF Chunk 

 

FORMAT Chunk (24 bytes in length total)  

Byte Number 

0 – 3 "fmt_" (ASCII Characters) 

4 – 7 
Length Of FORMAT Chunk (Binary, 

always 0x10) 

8 – 9 Always 0x01 

10 – 11 
Channel Numbers (Always 

0x01=Mono, 0x02=Stereo) 

12 – 15 Sample Rate (Binary, in Hz) 

16 – 19 Bytes Per Second 
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20 – 21 

Bytes Per Sample: 1=8 bit Mono, 

2=8 bit Stereo or 16 bit Mono, 4=16 

bit Stereo 

22 – 23 Bits Per Sample 

 

FIGURE 2.3 FORMAT Chunk 

 

DATA Chunk  

Byte Number 

0 – 3 "data" (ASCII Characters) 

4 – 7 Length Of Data To Follow 

8 – end Data (Samples) 

 

FIGURE 2.4 DATA Chunk 

 

The easiest approach to this file format might be to look at an actual WAV file to see how 

data is stored. In this case, let us examine DING.WAV, which is standard with all 

Windows packages. DING.WAV is an 8-bit, mono, 22.050 KHz WAV file of 11,598 

bytes in length. Lets begin by looking at the header of the file. 

 

246E:0100  52 49 46 46 46 2D 00 00-57 41 56 45 66 6D 74 20   RIFFF-..WAVEfmt.. 

246E:0110  10 00 00 00 01 00 01 00-22 56 00 00 22 56 00 00   ......…."V.."V……….. 

246E:0120  01 00 08 00 64 61 74 61-22 2D 00 00 80 80 80 80   ..……data"-....……… 

246E:0130  80 80 80 80 80 80 80 80-80 80 80 80 80 80 80 80   ..............…………….. 

246E:0140  80 80 80 80 80 80 80 80-80 80 80 80 80 80 80 80   ..............……………. 

 

As expected, the file begins with the ASCII characters "RIFF" identifying it as a WAV 

file. The next four bytes identifies the length, 0x2D46 bytes (11590 bytes in decimal), 

which is the length of the entire file minus the 8 bytes for the "RIFF" and length (11598 - 
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11590 = 8 bytes). The ASCII characters for "WAVE" and "fmt " follow. Next, we find 

the value 0x00000010 in the first 4 bytes (length of format chunk: always constant at 

0x10). The next four bytes are 0x0001 (Always) and 0x0001 (A mono WAV, one 

channel used).  

 

Since this is a 8-bit WAV, the sample rate and the bytes/second are the same at 

0x00005622 or 22,050 in decimal. For a 16-bit stereo WAV the bytes/sec would be 4 

times the sample rate. The next 2 bytes show the number of bytes per sample to be 

0x0001 (8-bit mono) and the number of bits per sample to be 0x0008.  

 

Finally, the ASCII characters for "data" appear followed by 0x00002D22 (11,554 

decimal), which is the number of bytes of data to follow (actual samples). The data is a 

value from 0x00 to 0xFF. In the example above 0x80 would represent "0" or silence on 

the output since the DAC, which is used to playback samples is a bipolar device (i.e. a 

value of 0x00 would output a negative voltage and a value of 0xFF would output a 

positive voltage at the output of the DAC on the sound card).  

RIFF stands for Resource Interchange File Format. The default byte ordering assumed for 

WAVE data files is little endian. The sample data must end on an even byte boundary. 8-

bit samples are stored as unsigned bytes, ranging from 0 to 255. 16-bit samples are stored 

as 2's-complement signed integers, ranging from -32768 to 32767. There may be 

additional subchunks in a Wave data stream. If so, each will have a char[4] SubChunkID, 

and unsigned long SubChunkSize, and SubChunkSize amount of data.  

 
 
2.2 ERROR CONCEALMENT 
  
We consider a number of techniques for error concealment which may be initiated by the 

receiver of an audio stream and do not require assistance from the sender. These 

techniques are of use when sender-based recovery schemes fail to correct all loss, or 

when the sender of a stream is unable to participate in the recovery. 
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Error concealment schemes rely on producing a replacement for a lost packet, which is 

similar to the original. This is possible since audio signals exhibit large amounts of short-

term self-similarity. As such, these techniques work for relatively small loss rates (~< 15 

percent) and for small packets (4-40 ms). When the loss length approaches the length of a 

phoneme (5-100 ms) these techniques break down, since whole phonemes may be missed 

by the listener [4]. It is clear that error concealment schemes are not a substitute for 

sender-based repair, but rather work in tandem with it. A sender-based scheme is used to 

repair most losses, leaving a small number of isolated gaps to be repaired. Once the 

effective loss rate has been reduced in this way, error concealment forms a cheap and 

effective means of patching over the remaining loss. 
 

Error concealment can be broadly classified into three categories:  

 

1. Insertion-based schemes repair losses by inserting a fill-in packet. This fill-in is 

usually very simple: silence or noise is common, as is repetition of the previous packet. 

Such techniques are easy to implement but, with the exception of repetition, have poor 

performance. 

 

2. Interpolation-based schemes use some form of pattern matching and interpolation to 

derive a replacement packet that is expected to be similar to the lost packet. These 

techniques are more difficult to implement and require more processing when compared 

with insertion-based schemes, which leads to improved performance. 

 

3. Regeneration-based schemes derive the actual state from packets surrounding the loss 

and generate a replacement for the lost packet from it. This process though expensive to 

implement, yields good results. 

 

The following section discusses each of these categories in detail. 
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2.2.1 INSERTION BASED REPAIR 
Insertion-based repair schemes derive a replacement for a lost packet by inserting a 

simple fill-in. The simplest case is splicing [2], where a zero-length fill-in is used; an 

alternative is silence substitution, where a fill-in with the duration of the lost packet is 

substituted to maintain the timing of the stream. Better results are obtained by using noise 

or a repeat of the previous packet as the replacement. The distinguishing feature of 

insertion-based repair techniques is that the characteristics of the signal are not used to 

aid reconstruction. This makes these methods simple to implement, but results in 

generally poor performance. 

 

2.2.1.1.SPLICING 
             Splicing together the audio on either side of the loss can conceal lost units so that 

no gaps are left due to a missing packet but the timing of the stream is disrupted. Low 

loss rates and short clipping lengths (4-16 ms) fair best, but the results were intolerable 

for losses above 3 percent [2]. The use of splicing can also interfere with the adaptive 

play out buffer required in a packet audio system, because it makes a step reduction in the 

amount of data available to buffer. The adaptive play out buffer is used to allow the 

reordering of misordered packets and removal of network timing jitter but poor 

performance of this buffer can adversely affect the quality of the entire system. It is 

therefore clear, that splicing together audio on either side of a lost unit is not an 

acceptable repair technique. 
 

2.2.1.2.SILENCE SUBSTITUTION 
             Silence substitution fills the gap left by a lost packet with silence in order to 

maintain the timing relationship between the surrounding packets. It is only effective 

with short packet lengths (< 4 ms) and low loss rates (< 2 percent), making it suitable for 

interleaved audio over low-loss paths [2]. The performance of silence substitution 

degrades rapidly as packet sizes increase, and quality is unacceptably bad for the 40 ms 

packet size in common use in network audio conferencing tools. Despite this, the use of 

silence substitution is widespread, primarily because it is simple to implement.  
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2.2.1.3.NOISE SUBSTITUTION 
           Since silence substitution has been shown to perform poorly, an obvious next 

choice is noise substitution, where, instead of filling in the gap left by a lost packet with 

silence, background noise is inserted instead. A number of studies of the human 

perception of interrupted speech have shown that phonemic restoration, the ability of the 

human brain to subconsciously repair the missing segment of speech with the correct 

sound, occurs for speech repair using noise substitution but not for silence substitution 

[2]. In addition, when compared to silence, the use of white noise has been shown to 

yield both better quality as well as intelligibility.   It is therefore recommended as a 

replacement for silence substitution. 
  

2.2.1.4.REPETITION  
             Repetition replaces lost units with copies of the unit that arrived immediately 

before the loss. It has low computational complexity and performs reasonably well. The 

subjective quality of repetition can be improved by gradually adding repeated units. The 

use of repetition with fading is a good compromise between the other poorly performing 

insertion-based concealment techniques and the more complex interpolation-based and 

regenerative concealment methods.  
 

2.2.2.INTERPOLATION BASED REPAIR 
            A number of error concealment techniques exist which attempt to interpolate from 

packets surrounding a loss to produce a replacement for that lost packet. The advantage 

of interpolation- based schemes over insertion-based techniques is that they account for 

the changing characteristics of a signal. 

  

2.2.2.1.WAVEFORM SUBSTITUTION 
                   Waveform substitution uses audio before and optionally after the loss to find 

a suitable signal to cover the loss. Audio engineers studied the use of waveform 

substitution in packet voice systems [2]. They examined both one- and two-sided 

techniques that use templates to locate suitable pitch patterns on either side of the loss. In 

the one-sided scheme, the pattern is repeated across the gap, but with the two-sided 



 11 

schemes interpolation occurs. The two-sided schemes generally performed better than 

one-sided schemes and both work better than silence substitution and packet repetition. 

 

2.2.2.2.PITCH WAVEFORM REPLICATION 
                           Audio engineers presented a refinement on waveform substitution by 

using a pitch detection algorithm on either side of the loss. Losses during unvoiced 

speech segments are repaired using packet repetition and voiced losses repeat a waveform 

of appropriate pitch length. The technique, known as pitch waveform replication, was 

found to work marginally better than waveform substitution [2]. 
 

2.2.2.3.TIME SCALE MODIFICATION 
                         Time scale modification allows the audio on either side of the loss to be 

stretched across the loss. This scheme that finds overlapping vectors of pitch cycles on 

either side of the loss, offsets them to cover the loss, and averages them where they 

overlap. Although computationally demanding, the technique appears to work better than 

both waveform substitution and pitch waveform replication.  

 

2.2.3.REGENERATION-BASED REPAIR 
                      Regenerative repair techniques use knowledge of the audio compression 

algorithm to derive codec parameters, such that audio in a lost packet can be synthesized. 

These techniques are necessarily codec-dependent but perform well because of the large 

amount of state information used in the repair. Typically, they are also computationally 

intensive, to some extent. 
  

2.2.3.1.INTERPOLATION OF TRANSMITTED STATE 
                      For codecs based on transform coding or linear prediction, it is possible that 

the decoder can interpolate between states. For example, the ITU G.723.1 speech coder 

[2] interpolates the state of the linear predictor coefficients on either side of short losses 

and uses either a periodic excitation the same as the previous frame, or gain matched 

random number generator, depending on whether the signal was voiced or unvoiced. For 
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longer losses, the reproduced signal is gradually faded. The advantages of codecs that can 

interpolate state rather than recoding the audio on either side of the loss is that there are 

no boundary effects due to changing codecs, and the computational load remains 

approximately constant. However, it should be noted that codecs where interpolation may 

be applied typically have high processing demands. 
 

2.2.3.2.MODEL - BASED RECOVERY 
                         In model-based recovery the speech on one, or both, sides of the loss is 

fitted to a model that is used to generate speech to cover the period loss. In the latest 

developments, interleaved encoded speech is repaired by combining the results of 

autoregressive analysis on the last received set of samples with an estimate of the 

excitation made for the loss period [2]. The technique works well for two reasons: the 

size of the interleaved blocks (8/16 ms) is short enough to ensure that the speech 

characteristics of the last received block have a high probability of being relevant. The 

majority of low-bit-rate speech codecs use an autoregressive model in conjunction with 

an excitation signal. 

 

2.3 AUDIO INTERPOLATION – AN OVERVIEW 
 
Audio interpolation is a method of making digital audio sound better than it really is. 

These days, almost every digital playback device (CD players, digital receivers, sound 

cards, etc) uses interpolation to improve our listening experience. And with computers 

ever increasing in speed, it's now possible to use software implementations as well 

without a serious decrease in performance. Let us first consider how sound is digitized. 

As a sound wave enters an ADC (analog to digital converter) samples are taken at timed 

intervals.  Higher sample rates produce better recordings, but also use more memory.   

So, despite the drawbacks of lower quality, people sometimes use lower sample rates to 

conserve space. The following is a 1046Hz sine wave being sampled at 8kHz.  The black 

dots in FIGURE 2.5 represent the samples.  
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FIGURE 2.5 Sampled Sine Wave at 8kHz 

For this example, the rate we want to output at is 32kHz.  To accomplish this we just send  

FIGURE 2.6 Sampled Sine Wave at 32 kHz 

each sample four times, as indicated in the above figure . 

This works effectively, but if we look at the actual sound wave being output, we see that 

there is a vague resemblance to the original.  Also notice the hard edges after each 

sample.  This gives lower sampled static sound.    

FIGURE 2.7 Comparison of Original Wave with Sampled Output 
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What interpolation does is instead of repeating each sample it creates new samples 

between the originals.  Thus a smoother wave form is output.  There are different 

methods that can be used, but by far the easiest, fastest, and most common is linear 

interpolation.  This method compares two original samples then, based on this 

information, creates new samples that change at an even rate. 

 

FIGURE 2.8 Linear Interpolated Wave 

The problem with linear interpolation is that it makes straight lines between each sample 

and sound waves don't follow straight paths (with the exception of synthesized sounds 

like a saw tooth).  Is it possible to recreate the natural curves of the sound wave?  Yes, to 

an extent.  To illustrate another method, let us consider the same situation (a 1046Hz 

sound wave sampled at 8kHz), but use a more complicated sound wave, i.e. tunes from a 

guitar.  FIGURE 2.9 is the original sound with markers placed at the sampling points and 

FIGURE 2.10 is the playback with linear interpolation. 

FIGURE 2.9 Original Wave Form With Sampled Points 

 

 



 15 

 

  FIGURE 2.10 Linear Interpolated Wave 

Cubic interpolation is basically an algorithm that tries to guess where the missing points 

should be, rather than plot them in a neat line.   Almost all graphic and drawing programs 

have a spline tool where you lay down points that are then connected by means of a 

curving line.  This same method can be applied to audio by using the samples as points 

on a plane.  

 

   FIGURE 2.11 Cubic Spline Interpolated Wave 

 

Though cubic interpolation is a better method than linear, it is also much slower.  Either 

way, we notice that neither method completely reconstructs the wave.  Peaks that are lost 

between samples during digitizing are lost permanently.  Even CD's, with a sample rate 

of 44.1kHz, can't effectively reproduce frequencies above 10kHz.  However, our ears 

have a hard enough time discerning those sounds anyway, so it probably doesn't matter. 
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2.4.LOSS MITIGATION SCHEMES 
In the following sections, three loss mitigation schemes are discussed.  These schemes 

have been discussed in the literature a number of times, and found to be of use in a 

number of scenarios. Each technique is briefly described, and its advantages and 

disadvantages are mentioned thereof. 

 

2.4.1.RETRANSMISSION  
Retransmission of lost packets is one of the means by which loss may be repaired.  It is 

clearly of value in non-interactive applications, with relaxed delay bounds, but the delay 

imposed means that it does not typically perform well for interactive use. In addition to 

the possibly high latency, there is a potentially large bandwidth overhead associated with 

retransmission.  Not only are units of data sent multiple times but also additional control 

traffic must flow to request retransmission.  In our case the overhead of requesting 

retransmission for most packets may be such that the use of forward error correction is 

more acceptable.  This leads to a natural synergy between the two mechanisms, with a 

forward error correction scheme being used to repair all single packet losses, and those 

receivers experiencing burst losses, and willing to accept the additional latency, using 

retransmission based repair as an additional recovery mechanism. In particular, protocols 

which use retransmission but bound the number of retransmission requests allowed for a 

given unit of data may be appropriate. Such retransmission-based schemes work best 

when loss rates are relatively small. As loss rates increase, the overhead due to 

retransmission requests increases. 

 

In the worst case, for every multicast packet, at least one receiver does not receive the 

packet, which means that every packet needs to be transmitted to the whole group at least 

twice." In cases such as this, it is clear that the use of retransmission is probably only 

appropriate as a secondary technique to repair losses, which are not repaired by FEC. An 

alternative combination of FEC and retransmission takes the approach of using parity 

FEC packets to repair multiple losses with a single retransmission, achieving substantial  
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savings relative to pure retransmission. Furthermore, the retransmission of a unit of audio 

does not need to be identical to the original transmission: the unit can be recoded to a 

lower bandwidth if the overhead of retransmission is thought to be problematic. There is 

a natural synchrony with redundant transmission, and a protocol may be derived in which 

both redundant and retransmitted units may be accommodated. This allows receivers that 

cannot participate in the retransmission process to benefit from retransmitted units if they 

are operating with a sufficiently large playout delay. The use of retransmission allows for 

an interesting trade-off between the desired playback quality and the desired degree of 

latency inherent in the stream. Within a large session, the amount of latency, which can 

be tolerated varies greatly for different participants: some users desire to participate 

closely in a session, and hence require very low latency, whereas others are content to 

observe and can tolerate much higher latency. 

 

Those participants who require low latency must receive the media stream without the 

benefit of retransmission-based repair. Others gain the benefit of the repair, but at the 

expense of increased delay. In order to reduce the overhead of retransmission, the 

retransmitted units may be piggybacked onto the ongoing transmission.  This also allows 

retransmission to be recoded in a different format, to reduce the bandwidth overhead 

further.  As an alternative, Forward Error Correction (FEC) information may be sent in 

response to retransmission requests, allowing a single retransmission to potentially repair 

several losses.  The choice of a transmission request algorithm, which is both timely and 

network friendly is an area of current study.  

 

2.4.2 FORWARD ERROR CORRECTION 
 Forward error correction (FEC) is the means by which repair data is added to a media 

stream, such that packet loss can be repaired by the receiver of that stream with no further 

reference to the sender. There are two classes of repair data which may be added to a 

stream: those which are independent of the contents of the stream and those which use 

knowledge of the stream to improve the repair process. 
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2.4.2.1 MEDIA INDEPENDENT FEC 
  There has been much interest in the provision of media-independent FEC using 

block or algebraic, codes to produce additional packets for transmission to aid the 

correction of losses. A number of media-independent FEC schemes have been proposed 

for use with streamed media.  These techniques add redundant data, which is transmitted 

in separate packets, to a media stream. Traditionally, FEC techniques are described as 

loss detecting and/or loss correcting.  In the case of streamed media, loss detection is 

provided by the sequence numbers in packets. 

 

The redundant FEC data is typically calculated using the mathematics of finite fields.  

The simplest of finite field is the eXclusive-OR operation.  Basic FEC schemes transmit 

k data packets with n-k parity packets allowing the reconstruction of the original data 

from any k of the n transmitted packets.  Budge [1] applied the XOR operation across 

different combinations of the media data with the redundant data transmitted separately 

as parity packets.  These vary the pattern of packets over which the parity is calculated, 

and hence have different bandwidth, latency and loss repair characteristics. 

 

 Parity-based FEC techniques have a significant advantage in that they are media 

independent, and provide exact repair for lost packets.  In addition, the processing 

requirements are relatively light, especially when compared with some media-specific 

FEC (redundancy) schemes, which use very low bandwidth, but high complexity 

encodings.  The disadvantage of parity based FEC is that the codings have higher latency 

in comparison with the media-specific schemes, which are discussed in following section. 

A number of FEC schemes exist which are based on higher-order finite fields, for 

example Reed-Solomon (RS) codes [6], which are more sophisticated and 

computationally demanding.  These are usually structured so that they have good burst 

loss protection, although this typically comes at the expense of increased latency.  

Dependent on the observed loss patterns, such codes may give improved performance, 

compared to parity-based FEC. This approach has been advocated for use with streaming 

audio [6]. 
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There are several advantages of Media Independent FEC schemes.  

1. The operation of the FEC does not depend on the contents of the packets, and the 

repair is an exact replacement for a lost packet.  

2. In addition, the computation required to derive the error correction packets is relatively 

small and simple to implement.  

The disadvantages of these schemes are the additional delay imposed, increased 

bandwidth and difficult decoder implementation. 

 

2.4.2.2 MEDIA-SPECIFIC FEC 
 The basis of media-specific FEC is to employ knowledge of a media compression 

scheme to achieve more efficient repair of a stream than can otherwise be achieved.  To 

repair a stream subject to packet loss, it is necessary to add redundancy to that stream:  

some information is added which is not required in the absence of packet loss, but which 

can be used to recover from that loss. 

 

The nature of a media stream affects the means by which redundancy is added.  If units of 

media data are packets, or if multiple units are included in a packet, it is logical to use the 

unit as the level of redundancy, and to send duplicate units.  By recoding the redundant 

copy of a unit, significant bandwidth savings may be made, at the expense of additional 

computational complexity and approximate repair.  If media units span multiple packets, 

for instance sensitive audio frames, it is sensible to include redundancy directly within 

the output of a codec. In another approach, media data packets include multiple copies of 

key portions of the stream, separated to avoid the problems of packet loss.  The 

advantages of this second approach is efficiency: the codec designer knows exactly which 

portions of the stream are most important to protect and less complex since each unit is 

coded only once. An alternative approach is to apply media-dependent FEC techniques to 

the most significant bits of a codec’s output, rather than applying it over the entire packet.  

Several codec descriptions include bit sensitivities that make this feasible.  This approach 

has low computational cost and can be tailored to represent an arbitrary fraction of the 

transmitted data. 
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The use of media-specific FEC has the advantage of low-latency, with only a single-

packet delay being added.  This makes it suitable for interactive applications, where large 

end-to-end delays cannot be tolerated.  In a unidirectional non-interactive environment it 

is possible to delay sending the redundant data, achieving improved performance in the 

presence of burst losses, at the expense of additional latency. 

 

2.4.3 INTERLEAVING 
   When the unit size is smaller than the packet size, and end-to-end delay is unimportant, 

interleaving is a useful technique for reducing the effects of loss.  Units are re-sequenced 

before transmission, so that originally adjacent units are separated by a guaranteed 

distance in the transmitted stream, and returned to their original order at the receiver.  

Interleaving disperses the effect of packet losses.  If, for example, units are 5ms in length 

and packets 20ms (ie:  4 units per packet), then the first packet could contain units 1, 5, 9, 

13; the second packet would contain units 2, 6, 10, 14; and so on.  It can be seen that the 

loss of a single packet from an interleaved stream results in multiple small gaps in the 

reconstructed stream, as opposed to the single large gap, which would occur in a non-

interleaved stream.  In many cases it is easier to reconstruct a stream with such loss 

patterns, although this is clearly media dependent.  Note that the size of the gaps is 

dependent on the degree of interleaving used, and can be made arbitrarily small at the 

expense of additional latency. 

 

   One of the main disadvantages of interleaving is that it increases latency.  This limits 

the use of this technique for interactive applications, although it performs well for non-

interactive use.  The major advantage of interleaving is that it does not increase the 

bandwidth requirements of a stream.  

 

2.5 SUMMARY 
 
2.5.1.NONINTERACTIVE APPLICATIONS: 
 For one-to-many transmissions in the style of radio broadcasts, latency is of 

considerably less importance than quality. In addition, bandwidth efficiency is a concern 
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since the receiver set is likely to be diverse and the group may include members behind 

low-speed links. The use of interleaving is compatible with both these requirements and 

is strongly recommended. Although interleaving drastically reduces the audible effects of 

lost packets, some form of error concealment will still be needed to compensate. In this 

case the use of a simple repair scheme, such as repetition with fading, is acceptable and 

will give good quality. 

 

Retransmission-based repair is not appropriate for a multicast session, since the receiver 

set is likely to be heterogeneous. This leads to many retransmission requests for different 

packets and a large bandwidth overhead due to control traffic. For unicast sessions 

retransmission is more acceptable, particularly in low-loss scenarios. 

 

A media-independent FEC scheme will perform better than a retransmission-based repair 

scheme, since a single FEC packet can correct many different losses and there is no 

control traffic overhead. The overhead due to the FEC data itself still persists, although 

this may be acceptable. In particular, FEC-protected streams allow for exact repair, while 

repair of interleaved streams is only approximate.  

 

2.5.2.INTERACTIVE APPLICATIONS: 
 For interactive applications, such as IP telephony, the principal concern is 

minimizing end-to-end delay. It is acceptable to sacrifice some quality to meet delay 

requirements, provided that the result is intelligible. The delay imposed by the use of 

interleaving, retransmission, and media-independent FEC is not acceptable for these 

applications. While media-independent FEC schemes do exist that satisfy the delay 

requirements, these typically have high bandwidth overhead and are likely to be 

inappropriate for this reason. Our recommendation for interactive conferencing 

applications is that media-specific FEC be employed, since this has low latency and 

tunable bandwidth overhead. Repair is approximate due to the use of low-rate secondary 

encodings, but this is acceptable for this class of applications when used in conjunction 

with receiver-based error concealment. 
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2.5.3.ERROR CONCEALMENT: 
   Receivers must be prepared to accept some loss in an audio stream. The overhead 

involved in ensuring that all packets are received correctly, in both time and bandwidth, 

is such that some loss is unavoidable. Once this is accepted, the need for error 

concealment becomes apparent. Many current conferencing applications use silence 

substitution to fill the gaps left by packet loss, but it has been shown that this does not 

provide acceptable quality. A significant improvement is achieved by the use of packet 

repetition, which also has the advantages of being simple to implement and having low 

computational overhead. The other error concealment schemes discussed provide 

incremental improvements, with significantly greater complexity. 
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3. IMPLELMENTATION METHODOLOGY 

 

3.1 INTRODUCTION: 
 
    A number of applications have emerged which use User Datagram Protocol (UDP) to 

deliver continuous media streams.  Due to the unreliable nature of UDP packet delivery, 

the quality of the received stream will be adversely affected by packet loss.  A number of 

techniques exist by which the effects of packet loss may be repaired.  These techniques 

have a wide range of applicability and require varying degrees of protocol support.  In 

our report, a number of such techniques were discussed, and recommendations for their 

applicability were made. 

 

The increasing power and connectivity of today's computers have fueled the growth in 

Internet traffic, predominantly in the form of text-based Web traffic. Text-based 

applications have some characteristics and requirements in common. Most, such as telnet, 

ftp, and http, require guaranteed delivery, where every unit of data must be delivered 

without loss or error. As a result, these applications use the Transport Control Protocol 

(TCP), which provides guaranteed delivery by automatically retransmitting lost or 

corrupted data packets. Certain applications, such as TFTP or DNS, may not need a 

strictly reliable protocol, but rather a simple protocol with minimal delay and overhead. 

These applications commonly use the User Datagram Protocol (UDP). UDP does not 

provide any protection against loss; however, it does not have the overhead of 

retransmission allowing it to provide a fast, "best- effort" delivery. Emerging new 

technologies in real-time operating systems and network protocols provide great 

opportunity for distributed multimedia applications. Multimedia applications have 

requirements different from text-based applications. An audio stream, for example, 

requires that data be received in a timely fashion and with not much emphasis on data 

loss. Data packets arriving beyond the threshold wait leads to a certain amount of breaks 

in the audio listened to .If a data packet arrives at the client too late, it misses the time 

slot during which it had to be played. This phenomenon, called jitter, causes gaps in the 

audio heard or unevenness in the video. In many cases, a late data packet in a multimedia 
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application contributes nothing to the playback and is equivalent to a loss. Small losses in 

the playback stream can be replaced with substitute data or concealed so that the user 

does not notice. Multimedia data transmission on the Internet often suffers from delay, 

jitter, and data loss. Data loss in particular can be extremely high on the Internet, often as 

high as 40%. Unlike traditional applications, multimedia applications can tolerate some 

data loss. While small gaps may not significantly impair media quality, too much data 

loss can result in unacceptable media quality. While TCP can be used to have any lost 

data retransmitted, the added delay and jitter of retransmissions and the window-based 

method of sending data, make TCP typically unsuitable for multimedia applications, 

especially when they are interactive. UDP, conversely, provides a "best-effort" service 

that provides the multimedia application with greater control over timing. UDP does not, 

however, offer any guarantees on data loss. With UDP, potentially all data sent can be 

lost. A multimedia stream can repair UDP data loss by the use of Forward Error 

Correction (FEC). The main idea behind FEC is for the server to add redundant data to a 

stream to help the client repair data loss. Media independent FEC seeks to repair data 

without knowledge of the data type, using a code or sequence to encode the data. One 

media independent FEC approach for multicast uses a code created from Galois Field [8] 

elements to construct a repair checksum that can be computed to recover a percentage of 

loss in a network stream. Media independent FEC systems have some shortcomings when 

they are used for an interactive audio session, primary of which is the added end-to-end 

delay to repair information when a packet is lost on the network. The receiver needs to 

wait until it has received a certain number of packets to be able to reconstruct the missing 

information. This will add to the overall latency of the playback because the receiver is 

waiting for many packets to arrive before decoding and reconstructing the missing 

information. Media-specific FEC uses knowledge of the data type in adding encoding 

information. A lost packet is replaced by the redundant data transmitted with the next 

packet. When redundancy fails to repair the lost packet, a repetition based error 

concealment technique is used to fill the gap. The receiver is able to repair some of the 

lost data using the smaller, lower quality repair information when the stream is played 

out. Media-specific FEC is used with many audio applications because the audio format 

has various quality levels, and researchers [9] have shown that audio can be repaired 
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using a lower quality sample of the lost information. Media specific FEC is also a good 

choice for interactive applications where a large end-to-end delay is a concern because 

media independent FEC may add too much delay to the stream. While FEC can be 

effective for repairing loss under some network conditions, under higher loss rates or 

burst loss the repair information may also be lost, making FEC ineffective. 
 

3.2 FORWARD ERROR CORRECTION 
 

The basic idea of FEC is to add redundant information to the original packet stream. 

One can outline two FEC mechanisms. The first mechanism sends a redundant encoded 

chunk after every n chunk. The redundant chunk is obtained by exclusive OR-ing the n 

original chunks. In this manner if any one packet of group of n+1 packet is lost, the 

receiver can fully reconstruct the lost packet. But if two or more packets are lost, the 

receiver cannot fully reconstruct the lost packet. In our case the sender can create a 

nominal audio stream and a corresponding low-resolution, low-bit rate audio stream. The 

low-bit-rate stream is referred to as the redundant stream. The sender constructs the nth 

packet or chunk from the nominal stream and appending to it the (n-1)th chunk from the 

redundant stream. In this manner, whenever there is a nonconsecutive packet loss, the 

receiver can conceal the loss by playing out the low-bit-rate encoded chunk that arrives 

with the subsequent packet. 

 

 
   FIGURE 3.1 Forward Error Correction  
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In the above illustration, one can witness the loss of the 3rd frame.  Since frames 

are constructed using forward error correction methodology, the 4th frame contains the 

low quality 3rd frame.  So, it becomes very easy for the client to reconstruct frame 3 from 

the frame 4. Even if multiple frames are missed, filling can be done by this way.  But if 

continuously many frames are lost, one cannot afford to choose this method.  In this case 

interleaving method (discussed below) shall help. 

 

3.3 INTERLEAVING 
Interleaving is another alternative available where the sender re-sequences units of 

audio data before transmission, so that originally adjacent units are separated by a certain 

distance in the transmitted stream. Interleaving can mitigate the effect of packet losses. 

The idea of interleaving is to ensure playback continuously with possible vacuoles.  That 

is, the methodology confirms delivery of uniformly separated frames. There is an 

illustration about the working furnished below. 

 

If for example, audio data units are 5 milliseconds in length and a single data frame is 

20 milliseconds (that is, 4 units per chunk) in length, then the first chunk could contain 

units 1, 5, 9, 13; the second chunk could contain 2, 6, 10 and 14 and so on. 

 

 

         FIGURE 3.2 Interleaving 
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The method depicted above delivers uniformly separated data units.  One can see that 

frame 3 (4 data units) is lost.  Even if it is lost, the sequence of audio data is more or less 

filled up.  As a worst case, if frame 2& 3 are lost, we might construct the following 

sequence: 1 - - 4 5 - - 8 9 - - 12 13 - - 16.  A still worse case is to have lost 2, 3 & 4. Even 

in that case the client could receive frames: 1 - - - 5 - - - 9 - - - 13 - - - .  If the audio data 

that is being played is not very sensitive, this gap would not be a big hearing ailment. 

 

3.4 INTERLEAVED FORWARD ERROR CORRECTION 
We propose to have Interleaved FEC, which essentially combines the best from both 

the above methodologies.  With the interleaved data frame transfer, one can be 

guaranteed with uniformly distributed frames even in the worst case.  What if the 

received frames are appended with low quality next frame?  This would guarantee more 

packed uniformly distributed frames of data.  The illustration shown below depicts the 

operation of interleaved FEC. 

 

 
 
 

FIGURE 3.3 Interleaved Forward Error Correction 
 
 

 

From the figure, it is very clear that even in worse conditions, the playing of the data 
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is not getting affected to a larger extent.  Although, we tend to fill the gaps with low 

quality frames, it’s always a better option to promise contiguous playback. 

 

The overhead on the system can be relatively compromised against the output quality 

that is being achieved.  Using interpolation techniques, the low quality small frame is 

reconstructed to form the frame of size equal to the size of a normal data frame (a 

constant).  Frame size in the audio playback input buffer being a constant determines the 

frame reconstructed. 
 

3.5.NETWORK LOSS CHARACTERISTICS 

   If it is desired to repair a media stream subject to packet loss, it is useful to have some 

knowledge of the loss characteristics, which are likely to be encountered.  A number of 

studies have been conducted on the loss characteristics of the audio packets and although 

the results vary somewhat, the broad conclusion is clear: in a large conference it is 

inevitable that some receivers will experience packet loss [7].  Packet traces show a 

session in which most receivers experience loss in the range 2-5%, with a somewhat 

smaller number seeing significantly higher loss rates.  Other studies have presented 

broadly similar results .It has also been shown that the vast majority of losses are of 

single packets [9].  Burst losses of two or more packets are around an order of magnitude 

less frequent than single packet loss, although they do occur more often than would be 

expected from a purely random process. Longer burst losses (of the order of tens of 

packets) occur infrequently.  These results are consistent with a network, here small 

amounts of transient congestion cause the majority of packet loss.  In few cases, a 

network link is found to be severely overloaded, and large amount of loss results. The 

primary focus of a repair scheme must, therefore be to correct single packet loss, since 

this is by far the most frequent occurrence and our proposed methodology focuses on this 

issue.  It is desirable that losses of a relatively small number of consecutive packets may 

also be repaired, since such losses represent a small but noticeable fraction of observed 

losses.  The correction of large bursts of loss is of considerably less importance. 
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3.6.SERVER SIDE DESIGN 
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FIGURE 3.4 Server Side Design 

 
3.6.1.REQUEST PARSER 
 

The Server waits for a request from the client. The server on request then identifies 

the request as whether it should play an audio file or it should retransmit a frame. 

Accordingly the request is sent for processing. 

 
3.6.2.DATABASE CONTROL 
 

 The server searches the requested data file in the audio database. The client side is 

acknowledged about the availability of the file. If the audio file is not found, then error 

messages are sent to the client side or else the audio file is sent for decoding and 

transmission. 
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3.6.3.DECODING SOUND FILE 
 

. The audio file is then decoded and its header is sent separately as a frame to the 

client without any modification. The header contains all the required information such as 

Sampling rate, Mono or Stereo, size of data samples, etc. Then the data samples alone are 

read and they are sent for conversion into frames.  

 
 

3.6.4.FORWARD ERROR CORRECTION BY DOWNSAMPLING 
 

In order to implement FEC, the data samples are also downsampled so that they can 

be appended with the high quality original data samples. This low quality downsampled 

parts are appended with the high quality parts of the previous frames. 

 
3.6.5.FRAMING MODULE 

 
Here the Forward error corrected frames are converted into complete packets by 

adding relevant header information to the frames. Some of the header information 

includes sequence number, end of file flags, frame type, etc. 

 
3.6.6.INTERLEAVING 

 
The frame sequence of the frames are completely altered using the method of 

interleaving. Copies of the frames are saved in a list and while doing so they are 

interleaved and positioned so that sequential loss of packets can be avoided while 

transmitting the packets to the client.  

 
3.6.7.FRAME BUFFER 
 

The linked list of the frames so created is maintained as a buffer, so that in case of 

retransmission, corresponding packets are retransmitted accordingly. The frames stored 

here will be in the interleaved format. The frame buffer is refreshed after waiting for a 

certain time interval. 
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3.7.CLIENT SIDE DESIGN 
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FIGURE 3.5 Client Side Design 
 

3.7.1.PRIORITY FIFO QUEUE 
The audio packets that are received from the server are maintained in a queue wherein 

the retransmitted frames are given more priority to be sent to the audio device so that the 

audio file can be played without any breaks. The queue consists of packets in the order in 

which the server had sent to them.  

 

3.7.2.SEQUENCER 
The audio packets are received from the server and maintained in a queue will be in 

disarray as they are interpolated. So they need to be sequenced so that the audio file can 

be played out in proper sequence. The sequenced frames are then sent to the Sequence 

analyzer. 

 

3.7.3.SEQUENCE ANALYZER 
The sequenced audio packets are then analyzed for any missing frames. If the missing 

frames are less in number and if they can be interpolated then there is no request for 

retransmission and the control is passed to the interpolation module. In case too many 
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frames are missing, the control is passed onto the request manipulator. 

 

3.7.4.REQUEST MANIPULATOR 
The missing frames are analyzed and only the key frames are requested for 

retransmission. By key frames, we mean the minimum frames that will be required  to 

reproduce the audio sequence by making full use of both the high and low quality parts of 

the frames.  

 

3.7.5.INTERPOLATION 
Here the frames are separated from their low quality appendages. If the situation 

requires the low quality frames then, they are interpolated and used as a high quality 

frame. The information on which frames to interpolate is provided by the sequence 

analyzer and the request manipulator in case of retransmissions. The data samples are 

then played sequentially using the audio interface. 
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4.CODING & TESTING 

 

4.1 CODING REFERENCES 

 

SERVER SIDE 

1. HEAD.H 
It includes the definitions of all the different structures used in the source code and the 

required header files. 

 

2. MSERVER.C 
It waits for a client to request an audio file and then forwards the audio file to other 

modules, so that it can be processed and transmitted to the client. 

 

3. PF.C 
Here the audio file is decoded so that the sampling rate, number of channels, number of 

samples and other required information can be known and these header information are 

sent to the client for they are required for playing the audio file. Also the data samples 

are read and sent as small frames to SENDFRAME module. They are appended with 

the low quality data samples got by downsampling the audio file so as to implement 

Forward Error Correction. 

 

4. SENDF.C  
Here, necessary header information is added to the frames and they are transmitted to 

the client. Here, only the header information of the WAV files is transmitted. 

 

5. SENDFRAME.C 
Here the data samples that are read from the WAV files are sent to the client side as 

numerous frames after adding proper header information. 
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6. FRAMEBUFFER.C 
Here, the Forward Error corrected frames are interleaved and stored as a group of fifty 

frames and then transmitted to the client by setting a proper end of file tag to the frame 

so that it can be easily identified at the client side. 

 

CLIENT SIDE  

7. SCL.C 
In this module the client sends the request to the server for an audio file. Network 

parameters are initialized here and acknowledgements are sent to the server. 

 

8. DLIST.C 
  Here the frames from the server are received in the order they were sent. Later they are 

sent for reordering and analyzing the sequence.  

 

9. SEQUENCER.C 
The received frames are reordered in this module .The lost frames and the key frames 

are reported to the server. 

 

10.  PLAY.C 
This module plays the samples at a desired rate. Here the sound device is opened using 

necessary parameters such as number of channels, sampling rate and format (little/big 

endian). Then the sound device is opened for writing the data in binary mode. 

 

4.2 EXPERIMENTAL EVALUATION 

We have used the proposed Interleaved Forward Error Correction technique and 

obtained the following output waveforms. The output waveforms are illustrated in the 

figures (next page) along with their input waveforms (WAV Files).  
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SCALE: X-AXIS –FREQUENCY (KHz) 

                         Y-AXIS-AMPLITUDE 

 
 

FIGURE 4.1 Waveform Analysis of Original Wave  
 

The above figure illustrates the original waveform. FIGURE 4.2(next page) indicates 

the waveform obtained as a result of our proposed technique (Interleaved Forward Error 

Correction). Analyzing the two waveforms, we notice the similarity in them.  
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SCALE: X-AXIS –FREQUENCY (KHz) 
                         Y-AXIS-AMPLITUDE 

 

 
 

FIGURE 4.2 Waveform Analysis of Output Wave after Interpolation 
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5.CONCLUSION AND FUTURE ENHANCEMENTS 
 

 
5.1 CONCLUSION 

 
The growth in power of today's computers and networks present the opportunity for 

high-quality audio across the Internet to the desktop. Internet audio and video typically 

does not use TCP, the de facto protocol, since TCP has too strong a guarantee on lost data 

and TCP does not respect the timing constraints multimedia applications require. Instead, 

many streaming multimedia applications use UDP, making them susceptible to high data 

loss rates. Forward Error Correction (FEC) is a promising means by which multimedia 

UDP flows can recover from lost data without using retransmissions. FEC has been used 

in many Internet audio applications and has been proposed for many other applications. 

Unfortunately, today's FEC implementations do not adapt to the specific loss bursts seen 

by the receiver, resulting in possibly high loss rates when the FEC repair depth is set too 

low, or high average delay when the FEC repair depth is set too high. In our project, we 

have proposed an Interleaved FEC protocol that combines the advantages of Forward 

Error Correction and Interleaving. Evaluation under network conditions with a variety of 

loss rates demonstrates our protocol provides high repair rates for high loss network 

conditions and low average delays for low loss network conditions. The contributions of 

this work include: 

1) A detailed design of our proposed methodology and 

2) An implementation of our Interleaved Forward Error Correction technique in a 

network environment. 
 

 
 5.2 FUTURE ENHANCEMENTS 

 
 There are many areas for possible future work. With media-specific FEC, if each 

frame is to be decoded and played as soon as it arrives, there will be added delay during 

the play out when one packet is lost. After some waiting, the secondary frame will be 

extracted, decoded and played after the one frame halt, causing the play out to be uneven, 
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even if there is no loss. Past works have shown that this jitter can be as detrimental to 

perceived quality as is data loss [8]. 

1. Analysis on how much jitter, FEC introduces to the audio play out and how to 

solve this problem can be an interesting area of future research.  

     2. It is also possible to combine FEC with selective retransmission. 

     3.The addition of FEC repair data to a media stream is an effective means by which 

that stream may be protected against packet loss. However, application designers should 

be aware that the addition of large amounts of repair data when loss is detected will 

increase network congestion and hence packet loss, leading to a worsening of the 

problem, which FEC intended to solve. This is particularly important when sending to 

large multicast groups, since network heterogeneity causes different sets of receivers to 

observe widely varying loss rates: low-capacity regions of the network suffer congestion, 

while high-capacity regions are underutilized. Existing techniques typically use some 

form of layered encoding of data sent at different rates over multiple multicast groups, 

with receivers joining and leaving groups in response to long-term congestion and with 

FEC employed to overcome short-term transient congestion. Such a scheme pushes the 

burden of adaptation from the server to the clients with the client choosing the number of 

layers (groups) based on the packet loss rate they observe. Since the different layers 

contain data sent at different rates, clients will receive different quality of service 

depending on the number of layers they are able to join. Layered encoding schemes are 

expected to provide a congestion control solution suitable for streaming audio 

applications. However, this work is not yet complete and in the long term, effective 

congestion control must be incorporated with our proposed methodology 
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APPENDIX –I: SOURCE CODE 

 
HEAD.H 

#include<sys/socket.h> 

#include<arpa/inet.h> 

#include<stdio.h> 

#include<alloc.h> 

#include<netinet/in.h> 

#include<string.h> 

#include <math.h> 

#include <stdlib.h> 

#include <time.h> 

#include <sys/ioctl.h> 

#include <sys/types.h> 

#include <sys/stat.h> 

#include <vector> 

#include <fcntl.h> 

 

//  Support from sound output 

 

#if defined(__linux__) 

#  define dsp_device "/dev/dsp" 

#  include <linux/soundcard.h> 

#endif 

 

struct header 

{ 

 int sequence_number; 

 int frame_type; 

 int check_sum; 
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 int size_of_frame; 

 int compression_index; 

 int end_of_file; 

}; 

struct frame 

{ 

 struct header h; 

 unsigned int data[2000]; 

 unsigned char data1[100]; 

 int crc_check; 

 struct frame *next; 

}; 
 
 
 
 
MSERVER.C 

#include "head.h" 

#include "pf.c" 

int main(int argc,char **argv) 

{ 

 int sockfd,n=0; 

 char str[]="Specify the file name : \0",p[30]; 

 socklen_t len; 

 struct displist d; 

 struct sockaddr_in servaddr,cliaddr; 

//  initializes network parameters 

 sockfd=socket(AF_INET,SOCK_DGRAM,0); 

 bzero(&servaddr,sizeof(servaddr)); 

 servaddr.sin_family=AF_INET; 

 servaddr.sin_port=htons(9877); 

 servaddr.sin_addr.s_addr=htonl(INADDR_ANY); 

 bind(sockfd,(const struct sockaddr *) &servaddr,sizeof(servaddr)); 
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 len=sizeof(cliaddr); 

 n=0; 

// server is made to wait for a request from a client 

 while(n==0) 

 n=recvfrom(sockfd,p,sizeof(p),0,(struct sockaddr *)&cliaddr,&len); 

 if(strcmp(p,"start\0")==0) 

 { 

 sendto(sockfd,str,sizeof(str),0,(const struct sockaddr *)&cliaddr,len); 

 n=0; 

// server receives the audio file to be played 

 while(n==0) 

 n=recvfrom(sockfd,p,sizeof(p),0,(struct sockaddr *)&cliaddr,&len); 

 partf(p,sockfd,(const struct sockaddr *) &cliaddr,len); 

 } 

 return 0; 

} 

 

PF.C 
 

#include "sendframe.c" 

#include "sendf.c" 

void partf(char fn[100],int sckid,const struct sockaddr *pservaddr,socklen_t len) 

{ 

FILE  *fp1,*fp2; 

int l=0,seq=-1,m=0; 

unsigned char s[1500]; 

unsigned char ch[4],ch1[2]; 

unsigned int c,d,e,i,j,s1[300],s2[200],k; 

// two pointers are made to point to the requested audio file 

fp1=fopen(fn,"rb"); 

fp2=fopen(fn,"rb"); 

sendto(sckid,"File found\0",10,0,pservaddr,len); 
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// decoding of header information of the audio file 

for (l=0;l<10;l++){ 

fread((void *)ch,sizeof(ch),1,fp1); 

s[m++]=ch[0]; 

s[m++]=ch[1]; 

s[m++]=ch[2]; 

s[m++]=ch[3]; 

} 

fread((void *)ch,sizeof(ch),1,fp2); 

printf("%c%c%c%c",ch[0],ch[1],ch[2],ch[3]); 

fread((void *)&c,sizeof(c),1,fp2); 

printf("\nSize %u",c); 

fread((void *)ch,sizeof(ch),1,fp2); 

printf("\n%c%c%c%c",ch[0],ch[1],ch[2],ch[3]); 

fread((void *)ch,sizeof(ch),1,fp2); 

printf("\n%c%c%c%c",ch[0],ch[1],ch[2],ch[3]); 

fread((void *)&c,sizeof(c),1,fp2); 

printf("\nsize %u",c); 

fread((void *)&c,sizeof(c),1,fp2); 

e = c; 

d = c & 0xffff; 

printf("\nfmt %u",d); 

if (d!=1) { 

printf("\nthis is not PCM wav file\n"); 

return; 

} 

d=c>>16; 

printf("\ncha %u",d); 

fread((void *)&c,sizeof(c),1,fp2); 

printf("\nNSPS %u",c); 

fread((void *)&c,sizeof(c),1,fp2); 
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printf("\nNABPS %u",c); 

fread((void *)&c,sizeof(c),1,fp2); 

e = c; 

d = c & 0xffff; 

printf("\nblk %u",d); 

d = e >>16; 

printf("\nbps %u",d); 

fread((void *)ch,sizeof(ch),1,fp1); 

fread((void *)ch,sizeof(ch),1,fp2); 

if (ch[0]!='d'){ 

for (j=0;j<2;j++){ 

fread((void *)ch,sizeof(ch),1,fp1); 

fread((void *)ch,sizeof(ch),1,fp2); 

s[m++]=ch[0]; 

s[m++]=ch[1]; 

s[m++]=ch[2]; 

s[m++]=ch[3]; 

} 

fread((void *)ch1,sizeof(ch1),1,fp1); 

fread((void *)ch1,sizeof(ch1),1,fp2); 

s[m++]=ch1[0]; 

s[m++]=ch1[1]; 

fread((void *)ch,sizeof(ch),1,fp1); 

fread((void *)ch,sizeof(ch),1,fp2); 

s[m++]=ch[0]; 

s[m++]=ch[1]; 

s[m++]=ch[2]; 

s[m++]=ch[3]; 

printf("\n%c%c%c%c",ch[0],ch[1],ch[2],ch[3]); 

} 

else printf("\n%c%c%c%c",ch[0],ch[1],ch[2],ch[3]); 
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fread((void *)&c,sizeof(c),1,fp2); 

printf("\nSize %u\n",c); 

k=c; 

fread((void *)ch,sizeof(ch),1,fp1); 

s[m++]=ch[0]; 

s[m++]=ch[1]; 

s[m++]=ch[2]; 

s[m++]=ch[3]; 

// despatching the header information alone 

sendf(0,m,seq++,s,sckid,pservaddr,len); 

fread((void *)s,sizeof(unsigned char),1000,fp2); 

m=0; 

j=0; 

 

/* samples are read and Forward Error Correction is implemented by          

downsampling   

and reading samples and then appending them with the unchanged samples 

of previous frames  */ 

while(j<k){ 

fread((void *)&c,sizeof(unsigned int),1,fp1); 

s1[m++]=c; 

j+=4; 

if (m==250){ 

// low quality appendage by downsampling 

while(m<375){ 

fread((void *)&c,sizeof(unsigned int),1,fp2); 

s1[m++]=c; 

fread((void *)&c,sizeof(unsigned int),1,fp2); 

} 

sendframe(0,1500,seq++,s1,sckid,pservaddr,len); 

m=0; 



 46 

} 

} 

sendframe(1,m*4,seq++,s1,sckid,pservaddr,len); 

fclose(fp2); 

fclose(fp1); 

return; 

} 

 

SENDF.C 
// constructs a complete frame only for the header information of the audio file 

void sendf(int endof,int leng,int num,unsigned char s[100],int sockfd,const struct 

sockaddr *claddr,socklen_t len) 

{ 

 struct frame f;   

f.h.sequence_number=num; 

 f.h.frame_type=2; 

 f.h.size_of_frame=leng; 

 f.h.compression_index=3; 

 f.h.end_of_file=endof; 

f.h.check_sum=f.h.sequence_number^f.h.frame_type^f.h.size_of_frame^f.h.comp

ression_index; 

 for(int i=0;i<leng;i++) 

 f.data1[i]=s[i]; 

 printf("seqno : %d  \t size : %d\n",num,leng); 

// sends header information to the client 

 sendto(sockfd,(const void *)&f,sizeof(f),0,claddr,len); 

 return; 

} 

 

SENDFRAME.C 
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/*  makes a complete frame of data samples by adding header information for a 

set of data samples */ 

#include "framebuffer.c" 

void sendframe(int endof,int leng,int num,unsigned int s[500],int sockfd,const 

struct sockaddr *claddr,socklen_t len)  

{ 

 struct frame f;   

 f.h.sequence_number=num; 

 f.h.frame_type=2; 

 f.h.size_of_frame=leng; 

 f.h.compression_index=3; 

 f.h.end_of_file=endof; 

f.h.check_sum=f.h.sequence_number^f.h.frame_type^f.h.size_of_frame^f.h.comp

ression_index; 

 for(int i=0;i<leng;i++) 

 f.data[i]=s[i]; 

// sends the created frame for buffering and transmitting to clients 

framebuffer(f,sockfd,claddr,len);     

 sendto(sockfd,(const void *)&f,sizeof(f),0,claddr,len); 

 return; 

} 

 

FRAMEBUFFER.C 
// here a buffer is maintained and it is frequently refreshed 

vector<frame> v; 

void framebuffer(struct frame f1,int sockfd,const struct sockaddr 

*claddr,socklen_t len) 

{ 

int i; 

vector<frame> :: iterator itr = v.begin(); 

// Interpolation is done my rearranging the list with their sequence numbers 
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if (f1.h.sequence_number%50==0) { 

v.clear(); 

v.push_back(f1); 

} 

else{ 

// inserts the frame in its correct interleaved position 

if (f1.h.sequence_number%50<5) v.push_back(f1); 

else{ 

for (i=0;i<v.size();i++){ 

if (f1.h.sequence_number%5<v[i].h.sequence_number%5) break; 

} 

itr = v.begin(); 

itr=itr+i; 

v.insert(itr,f1); 

} 

} 

// sends the frames to the client in an interleaved manner 

if (v.size()%50==0 || f1.h.end_of_file==1){ 

if (f1.h.end_of_file==1){ 

v[v.size()-1].h.end_of_file=3; 

} 

for (i=0;i<v.size();i++){ 

printf("%d %d\n",v[i].h.sequence_number,v[i].h.size_of_frame);  

sendto(sockfd,(const void *)&v[i],sizeof(f1),0,claddr,len); 

} 

printf("\n"); 

} 

return; 

} 

 

SCL.C 
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// sends the request to the server for an audio file 

#include "head.h" 

#include "dlist.c" 

int main(int argc,char **argv) 

 { 

 int sockfd,k=0; 

 char ch,mesg[100],fln[30]; 

 socklen_t l; 

 struct frame f; 

 struct sockaddr_in sckaddr; 

// initializing network parameters 

 bzero(&sckaddr,sizeof(sckaddr)); 

 sckaddr.sin_family=AF_INET; 

 sckaddr.sin_port=htons(9877); 

 inet_pton(AF_INET,argv[1],&sckaddr.sin_addr); 

            sockfd=socket(AF_INET,SOCK_DGRAM,0); 

 l=sizeof(sckaddr); 

// requesting and acknowledging the server 

 printf("\nEnter y to continue n to stop : "); 

 scanf("%c",&ch);  

 if(ch=='y') 

 { 

 sendto(sockfd,"start\0",6,0,(const struct sockaddr *)&sckaddr,sizeof(sckaddr)); 

 while(k==0) 

 k=recvfrom(sockfd,mesg,sizeof(mesg),0,(struct sockaddr *)&sckaddr,&l); 

 printf("%s",mesg); 

 scanf("%s",fln); 

 sendto(sockfd,fln,sizeof(fln),0,(struct sockaddr *)&sckaddr,l); 

 displst(sockfd,(struct sockaddr *)&sckaddr,sizeof(sckaddr)); 

 } 

 else 
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 sendto(sockfd,"stop\0",5,0,(const struct sockaddr *)&sckaddr,sizeof(sckaddr)); 

 return 0; 

} 

 

 

DLIST.C 
#include "sequencer.c" 

struct  frame b; 

void displst(int sckid,struct sockaddr *servaddr,socklen_t len) 

{ 

 int n=0,i; 

 unsigned char str[5000]; 

 char s[120]; 

 recvfrom(sckid,s,sizeof(s),0,servaddr,&len); 

 if(strcmp(s,"No Such File\0")==0)  

 { 

 printf("%s\n",s); 

 return; 

 } 

 else 

 { 

/* receiving frames from the server in the order they were sent and sending 

them for reordering */ 

fp=fopen("out.dat","wb"); 

 while((n=recvfrom(sckid,(void *)&b,sizeof(b),0,servaddr,&len))!=0) 

 { 

 for(int i=0;i<b.h.size_of_frame;i++) 

 str[i]=b.data[i]; 

 fwrite((void *)str,b.h.size_of_frame,1,fp); 

 printf("%d\t",b.h.sequence_number);  

 sequencer(b); 



 51 

 if(b.h.end_of_file==3) break; 

 } 

 } 

fclose(fp); 

return; 

  

 

 

SEQUENCER.C 
// reordering of the received frames 

unsigned char ch[4],ch1[2]; 

unsigned int c,d,e,i,s; 

FILE *fp; 

vector<frame> v1; 

void sequencer(struct frame f) 

 { 

 vector<frame> :: iterator itr1 = v1.begin(); 

 int k; 

 if (f.h.sequence_number<1) v1.push_back(f); 

 if (f.h.sequence_number%50==0 && f.h.sequence_number!=0){ 

 v1.clear();v1.push_back(f);} 

 else{ 

 for (k=0;k<v1.size();k++){ 

 if (f.h.sequence_number<v1[k].h.sequence_number) break; 

 } 

 itr1 = itr1+k; 

 v1.insert(itr1,f); 

 } 

 for (k=0;k<v1.size();k++){ 

 printf("%d \t",v1[i].h.sequence_number); 

 }  
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return; 

 } 

 

 

PLAY.C 
// plays the samples at a desired rate      

unsigned char ch[4],ch1[2]; 

unsigned int c,d,e,i,s; 

short int *data; 

int sampling_rate,channels,number_of_samples,device,stereo, 

format,bytes_per_second; 

char fn[50]; 

FILE *fp,*fp1; 

int main(){ 

printf("enter file name\n"); 

scanf("%s",fn); 

fp=fopen(fn,"rb"); 

fread((void *)ch,sizeof(ch),1,fp); 

printf("%c%c%c%c",ch[0],ch[1],ch[2],ch[3]); 

fread((void *)&c,sizeof(c),1,fp); 

printf("\n%u",c); 

fread((void *)ch,sizeof(ch),1,fp); 

printf("\n%c%c%c%c",ch[0],ch[1],ch[2],ch[3]); 

fread((void *)ch,sizeof(ch),1,fp); 

printf("\n%c%c%c%c",ch[0],ch[1],ch[2],ch[3]); 

fread((void *)&c,sizeof(c),1,fp); 

printf("\nsize %u",c); 

fread((void *)&c,sizeof(c),1,fp); 

e = c; 

d = c & 0xffff; 

printf("\nfmt %u",d); 
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if (d!=1) { 

printf("\nthis is not PCM wav file\n");return 0;} 

d=c>>16; 

printf("\ncha %u",d); 

channels=d; 

fread((void *)&c,sizeof(c),1,fp); 

printf("\nNSPS %u",c); 

sampling_rate=c; 

fread((void *)&c,sizeof(c),1,fp); 

printf("\nNABPS %u",c); 

fread((void *)&c,sizeof(c),1,fp); 

e = c; 

d = c & 0xffff; 

printf("\nblk %u",d); 

d = e >>16; 

printf("\nbps %u",d); 

bytes_per_second = d/8; 

fread((void *)ch,sizeof(ch),1,fp); 

if (ch[0]!='d'){ 

fread((void *)ch,sizeof(ch),1,fp); 

fread((void *)&c,sizeof(c),1,fp); 

fread((void *)ch1,sizeof(ch1),1,fp); 

fread((void *)ch,sizeof(ch),1,fp); 

printf("\n%c%c%c%c",ch[0],ch[1],ch[2],ch[3]); 

} 

else printf("\n%c%c%c%c",ch[0],ch[1],ch[2],ch[3]); 

fread((void *)&c,sizeof(c),1,fp); 

printf("\nSize %u\n",c); 

number_of_samples=c/2; 

// opening sound device using necessary parameters 

device = open(dsp_device,O_WRONLY); 
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if (device < 0){ 

printf("Couldn't open sound device\n");} 

format = AFMT_S16_NE; 

if (ioctl(device,SNDCTL_DSP_SETFMT,&format) < 0){ 

printf("Couldn't open sound device\n");} 

if (channels>1) 

stereo = 1; 

else stereo = 0;  

if (ioctl(device,SNDCTL_DSP_STEREO,&stereo) < 0){ 

printf("Couldn't open sound device\n");} 

if (ioctl(device,SNDCTL_DSP_SPEED,&sampling_rate) < 0){ 

printf("Couldn't open sound device\n");} 

// open sound device for writing data in binary mode 

fp1 = fdopen(device,"wb");  

printf("enter\n"); 

fread((void *)data,bytes_per_second,number_of_samples,fp); 

fwrite((void *)data,bytes_per_second,number_of_samples,fp1); 

fflush(fp1); 

fclose(fp); 

fclose(fp1); 

return 0; 

} 
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APPENDIX –II: WORKING ENVIRONMENT 
 

OPERATING SYSTEM: LINUX 

PROGRAMMING LANGUAGE: C 

   


